Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555121

RESUMO

Experimental findings for SARS-CoV-2 related to the glycan biochemistry of coronaviruses indicate that attachments from spike protein to glycoconjugates on the surfaces of red blood cells (RBCs), other blood cells and endothelial cells are key to the infectivity and morbidity of COVID-19. To provide further insight into these glycan attachments and their potential clinical relevance, the classic hemagglutination (HA) assay was applied using spike protein from the Wuhan, Alpha, Delta and Omicron B.1.1.529 lineages of SARS-CoV-2 mixed with human RBCs. The electrostatic potential of the central region of spike protein from these four lineages was studied through molecular modeling simulations. Inhibition of spike protein-induced HA was tested using the macrocyclic lactone ivermectin (IVM), which is indicated to bind strongly to SARS-CoV-2 spike protein glycan sites. The results of these experiments were, first, that spike protein from these four lineages of SARS-CoV-2 induced HA. Omicron induced HA at a significantly lower threshold concentration of spike protein than the three prior lineages and was much more electropositive on its central spike protein region. IVM blocked HA when added to RBCs prior to spike protein and reversed HA when added afterward. These results validate and extend prior findings on the role of glycan bindings of viral spike protein in COVID-19. They furthermore suggest therapeutic options using competitive glycan-binding agents such as IVM and may help elucidate rare serious adverse effects (AEs) associated with COVID-19 mRNA vaccines, which use spike protein as the generated antigen.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hemaglutinação , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Antivirais , Células Endoteliais , SARS-CoV-2 , Vacinas contra COVID-19/efeitos adversos
2.
Front Biosci (Landmark Ed) ; 26(12): 1493-1502, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34994164

RESUMO

BACKGROUND: Despite the fact that the clinical efficacy of hydroxychloroquine is still controversial, it has been demonstrated in vitro to control SARS-CoV-2 multiplication on Vero E6 cells. In this study, we tested the possibility that some patients with prolonged virus excretion could be infected by less susceptible strains. METHOD: Using a high-content screening method, we screened 30 different selected isolates of SARS-CoV-2 from different patients who received azithromycin ± hydroxychloroquine. We focused on patients with viral persistence, i.e., positive virus detection in a nasopharyngeal sample ≥10 days, and who were tested during two French epidemic waves, late winter-spring of 2020 and the summer of 2020. Dose-response curves in single-molecule assays with hydroxychloroquine were created for isolates with suspected reduced susceptibility. Genome clustering was performed for all isolates. RESULTS: Of 30 tested strains, three were detected as replicating in the presence of azithromycin + hydroxychloroquine, each at 5 µM. The dose-response model showed a decrease in susceptibility of these three strains to hydroxychloroquine. Whole genome sequencing revealed that these three strains are all from the second epidemic wave and two cluster with isolates from Africa. CONCLUSIONS: Reduced susceptibility to hydroxychloroquine was not associated with viral persistence in naso-pharyngeal samples. Rather, it was associated with occurring during the second epidemic wave, which began in the summer and with strains clustering with those with a common genotype in Africa, where hydroxychloroquine was the most widely used.


Assuntos
Tratamento Farmacológico da COVID-19 , Hidroxicloroquina , Azitromicina/farmacologia , Humanos , Hidroxicloroquina/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...